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Abstract
Researching the vulnerabilities and security concerns of 
WinCE-based Personal Digital Assistants (PDAs) in an 
802.11 wireless environment resulted in identifying 
CAN-2001-{0158 to 0163}.  The full understanding and 
demonstration of some vulnerabilities would have 
required reverse engineering ActiveSync, which was 
beyond the scope of this research.  Moreover, the WinCE 
IP stack demonstrated unstabilities under a number of 
attacks, one of which produced symptoms in hardware.  
The inaccessibility of the 802.11b standard 
documentation was a source of delays in the research;  
however, we created three proof-of-concept applications 
to defeat 802.11b security.  One collects valid MAC 
addresses on the network, which defeats MAC-address-
based restrictions.  Another builds a code book using 
known-plaintext attacks, and the third decrypts 802.11b 
traffic on-the-fly using the code book.  
Keywords:WinCE, WEP, ActiveSync, wireless, security, 
802.11b, vulnerability

1. Introduction

Personal Digital Assistants (PDAs) may be vulnerable 
to accidents during transport or attacks against the 
services and protocols used.  Networked PDAs may be 
vulnerable to a number of TCP/IP attacks, especially 
resource exhaustion attacks due to the limited resources 
provided by the PDA.   Other attacks against networked 
PDAs would  include malicious content downloaded 
directly or through a service such as avantgo.com, hostile 
JavaScript, ActiveX and Java.  An aspect particular to 
WinCE-based PDAs is the availability of 
synchronization services through the ActiveSync 
protocol over a serial link, infrared or over TCP/IP;  
therefore ActiveSync can also be attacked.   The 
convenience of PDAs is enhanced by wireless access, 
which makes them vulnerable to attacks against the 
wireless standard 802.11b.

Whereas normal computers may be locked in a trusted 
area, portables may be carried into unsafe areas, and may 
also be whisked away by an attacker in a moment of 
distraction or during a break and replaced after installing 
a keylogger or other trojan program.  Therefore, we 
believe that physical attacks on portable devices are 
much more likely than against normal computers;  in 
particular, we are concerned about the speed of the 
attacks which may enable “tainting” the portable device. 

ActiveSync was created to provide file 
synchronization capabilities for WinCE-based PDAs.  It 
provides both network-based and local (USB or serial) 
synchronization capabilities.  The impersonation of a host 
or PDA, as well as attacks on the host providing the 
service were considered.  However, ActiveSync 
specifications are proprietary (closed) and were 
unavailable to us.  Therefore, we were limited to probing 
the outside of this black box without being able to 
provide a comprehensive analysis.  

In an 802.11b wireless environment, several measures 
and features are supposed to provide some measure of 
security.  These are the SSID (Service Set Identifier), 
MAC address restriction, and the wireless encryption 
protocol (WEP).  Networks are identified and segregated 
by an SSID.  The SSID can be broadcast using “beacon” 
frames.  So-called “closed” networks do not broadcast 
SSIDs, so the users have to know the name of the 
network.  However, finding valid SSIDs is trivial with 
any network sniffer.  Therefore, we focused on  MAC 
address restriction, and the wireless encryption protocol 
(WEP).  Our methods of attack have been found 
independently by other teams and announced first 
through unrefereed channels [1, 2], even though we had 
independently identified those we used before their 
announcements.  However, we implemented these attacks 
and found them effective and practical, contrary to claims 
by the 802.11b chairperson  [6].  We also found 
implementation errors in 802.11b hardware.  
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2. Materials and Methods

The initial testbed comprised 3 Aero 1550 Pocket PC 
devices by Compaq, an Aironet card and 2 base stations 
AP340 by Cisco (gifts of Microsoft) as well as two PCs 
belonging to CERIAS.  One PC ran Windows 2000 and 
served as a synchronization host for the handhelds.  
Another was able to boot in either Windows 2000 or 
Linux Red Hat 6.2;  this PC had a PCMCIA card reader 
and was used to sniff wireless traffic and as a source of 
attacks against the synchronization host and the Cisco 
base station.  It was found that the Aero 1550 devices 
were incapable of powering the Aironet card due to 
incompatible voltages.  We later received two PocketPC 
iPaq devices by Compaq, two Ethernet cards and two 
more wireless cards (Orinoco WaveLan).  The iPaqs 
were running WinCE 3.0.9348 (Build 9456).

3. ActiveSync

a) Synchronization over a serial link

The most direct ActiveSync connection may be 
established by placing the device into a charging cradle 
which is connected to the serial port of a PC.  After the 
initial connection the user at the PC will be prompted to 
authenticate himself/herself if and only if the device is 
set to require authentication.  Authentication for 
ActiveSync comes in the form of a 4 decimal digit 
personal identification number (PIN) .  Should a PDA be 
left briefly unattended, it is possible to try to synchronize 
it in the cradle of a hostile computer.

If the correct PIN is supplied then the device and the 
PC compare the files that are to be synchronized and 
transfer them as necessary.  If an incorrect PIN number 
is supplied, then an error message is displayed and the 
user may guess twice more before the connection is 
broken. To re-establish a new connection, with three 
more attempts,  seemed at first to require removing and 
replacing the PDA in the cradle.  However, we 
discovered that the unit does not have to be removed 
physically from the cradle. The connection can be reset 
programatically and three more successive tries are 
granted.

We were successful in making a proof-of-concept 
(unoptimized and slow) brute force attack in the cradle 
by resetting the connection every three password 
attempts.  We communicated our findings to Microsoft 
and suggested that an exponential delay be implemented, 
which would deny for a while new connection attempts 
to the PDA.  The delay would be increased by a hard 

coded factor after every failed connection attempt.  
The brute force program was a Visual Basic script that 

utilized a function called SendKeys(), which sends 
keystrokes through the GUI interface. By sending key 
strokes to the ActiveSync connection application on the 
PC, it was possible to establish a connection, try three 
passwords and reconect to try it again.  Obviously, 
anyone who understands the internals of ActiveSync can 
directly brute force the 4 required digits in a fraction of 
the time by avoiding the GUI entirely.  The key to this 
vulnerability is the trust relationship between the PDA 
and the host PC.  Because the PDA acts as the 
authentication server, it should not be trusting the client 
PC and the software running on it.  The PDA should be 
controlling the exponential backoff, and not the PC.

b) ActiveSync synchronization over a Network 
(DoS Attacks CAN-2001-0158, CAN-2001-0159)

ActiveSync listens on port 5679 of a host PC for a 
PDA attempting a network synchronization.  If a PDA is 
synchronized through the cradle, port 5679 is closed.  
The availability of the network synchronization function 
can be enabled or disabled by the user through an option 
in the file menu of the host.  

We were able to enact a denial of service (DoS) attack 
and remotely close the port by establishing a connection 
to it and feeding ActiveSync any line that was longer 
than seven characters.  The port stayed closed until the 
network synchronization option was locally re-enabled 
on the desktop machine.  Anyone with TCP/IP 
connectivity to the PC could shut down the service, 
which is potentially anyone on the internet.  

Once open, port 5679 stayed open even if network 
synchronization was disabled.  Another DoS attack was 
that as long as a connection to port 5679 was established, 
even if there were no authentication taking place (no 
traffic), ActiveSync would not allow any other device to 
synchronize by network or by cradle. This lasted for 
about 20 seconds at which point the connection was 
closed and became available once again. This could also 
be exploited remotely in order to prevent legitimate users 
from synchronizing.  By simply establishing a connection 
to the port, closing  it before the 20 seconds elapsed and 
then re-establishing it again, we could keep the port 
continuously busy, thus making ActiveSync refuse all 
other synchronization requests.

If the protocol specifications and the code had been 
available to us, we would have been able to assess 
whether the vulnerabilities were protocol flaws or 
implementation problems.  
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4. TCP/IP Vulnerabilities

a) Random IP packets and DoS attacks

In order to test the WinCE IP stack, we used a tool 
named ISIC [4] that generates random IP packets.  ISIC 
is a suite of utilities to exercise the stability of an IP 
Stack and its component stacks (TCP, UDP, ICMP et. 
al.).  It generates pseudo-random packets of the target 
protocol. The packets can be given characteristics, e.g., 
40% of the packets generated can have IP Options.  The 
percentages are arbitrary and most of the packet fields 
have configurable parameters.  We sent packets to the IP 
stack of an iPaq using both an Ethernet card and a 
wireless (Orinoco Silver 802.11b) card.

We were surprised to find that which pseudo-random 
number generator was used was an important 
consideration.  Some observed WinCE severe crashes 
could not be obtained with a different random number 
generator.  This is most likely due to the fact that a 
specific sequence of numbers from a generator is needed 
in order to produce a sequence of packets.  Other 
pseudo-random generators may be completely unable to 
produce a sequence that another generator can.  Finally, 
we used a hardware random number generator embedded 
into an Intel Celeron motherboard, which seemed to be 
able to produce the entire range of observed effects.  No 
application was running on the iPaq while the packets 
were sent to it.  Thereafter, the functionality of the 
TCP/IP stack was tested by running Internet Explorer, if 
possible.

Five test results were randomly observed from 
sending hundreds of thousands of packets:

1)Loss of Internet capability:  the iPaq was no longer 
able to connect to any outside source, however no local 
programs seemed affected. Shutting off the iPaq did not 
restore Internet capability, and a soft reset (pressing the 
iPaq's reset button) was necessary to restore 
functionality.

2)Needed hard reset: All programs froze on the iPaq 
and the unit gave no responses. A soft reset was 
insufficient to restore functionality, and disconnecting 
the iPaq's battery via the unit's switch was necessary.  
This caused a total data loss.

3)Internet Explorer application error:  Trying to run 
I.E. produced a “fatal application error” and a soft reset 
was necessary to restore the program's functionality.

4)Memory Critically Low error: This error message 
was present in a window at the end of the ISIC run, most 
often with several instances of it on the screen. It stated 
that one or more programs should be closed; yet there 
were no programs running at the time. A soft reset was 

necessary to free the allocated memory.
5)No effect: No visible effects were found after 

running ISIC.
However, the effects were highly unreproducible, even 

after resending the same sequence of packets, or a subset.   
The longer we would try to test the iPaq (not necessarily 
time but attempts), the less frequently we would observe 
problems.  After much testing and grief, we found that 
there was a memory problem related to when the iPaq 
was turned “off” (sleep) for long periods of time. The 
most common time for the Memory Critically Low error 
was just after the iPaq was turned on after a long period 
of being off (several hours);  about 27MB (out of 32 MB) 
were in use after sending the random packets. As the iPaq 
was reset during tests, the memory reported as being used 
slowly went down to about 5MB, until effects 1-4 could 
rarely be observed.

Due to the irreproducibility of the results, we were 
unable to specify the conditions causing each effect.  
Microsoft was notified of this during summer of 2001.  
While we were unable to pinpoint a specific 
vulnerability, these results suggest a lack of robustness 
that could be exploited to cause data losses.

b) Known exploits 

A number of known attacks against Windows 
operating systems were run against the iPaq (see 
Appendix A) on a wireless network, with and without 
using encryption (WEP, see part 3).  In order to have an 
open port,  the application  “vxWeb” (by Cambridge 
Computer Corp) was running on the iPaq, as needed.  It 
provided a web server on port 80.  The attacks were 
compiled on and sent from Red Hat Linux and OpenBSD 
machines.   Of these, Kod was very effective, disabling 
the IP stack every time. There was a complete loss of 
internet connectivity until the iPaq was given a soft reset. 
This is caused by an IGMP vulnerability  known since at 
least June 1999 (CVE-1999-0918).  However it was 
unknown that it affected WinCE, as this information is 
absent from the CVE and databases like ISS’s X-Force at 
the time of this writing.

c) Vulnerability Scan 

We scanned the WinCE iPAQ for known 
vulnerabilities using Nessus [3].  We found that WinCE 
uses a common trivial time dependency algorithm to 
generate its initial sequence numbers. To achieve 
reliability, TCP uses sequence numbers that keep track of 
the data exchanged during its sessions. During the setup 
of a TCP connection (the three way handshake), each 
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side generates an initial sequence number (ISN) that they 
will exchange in order to synchronize their TCP stacks 
[RFC 793]. If the ISN can be guessed, then a TCP 
connection can be setup without needing to receive any 
packets from the other side, which enables IP spoofing 
[7] and TCP Session Hijacking [5] attacks.  This was 
given ID CAN-2001-0162, as there was no report that we 
could find of this WinCE vulnerability at the time of the 
discovery. 

The Cisco Wireless Base Station also used a trivial 
algorithm to generate its initial sequence numbers (CAN-
2001-0163).  It used the 64K rule which increases a 
sequence counter by a constant (usually 128000) every 
second and by 64000 for each new connection. The same 
attacks that were discussed earlier could be used against 
the access point.

5. The 802.11b Standard 

a) MAC addresses
Restricting association and access to an 802.11b 

network based on the MAC (hardware) address of the 
wireless cards is one security mechanism that we 
attacked.  We created a program, wmacs, that sniffs a 
wireless interface and gives the MAC addresses that are 
currently used on the network.  Once a collection of 
allowed MAC addresses has been obtained, using them 
is a matter of convincing the wireless card to use it.  We 
studied whether a wireless card could be used to spoof 
any MAC address, or whether it was restricted to MAC 
addresses of the same manufacturer, etc...  Whereas this 
is not highly original research, it needed to be verified 
because the wireless hardware is significantly different 
from regular Ethernet cards.

We setup the base station to restrict incoming MAC 
addresses and allow only one representative Ethernet 
address from each range associated to a manufacturer 
(Appendix B). The first 3 bytes represent the company 
that the product is registered to;  for simplicity’s sake we 
used “11:11:11” as the last three bytes.  This produced 
an address different from the one given to our wireless 
card at the factory.  Therefore, our wireless card should 
not have been able to associate and communicate with 
the wireless network.  

Then we setup our Aironet card on our OpenBSD 
system to connect to the base station:

ifconfig an0 down 
(brings an0, the Aironet card, offline)

ancontrol an0 -n [3bears] 
(sets an0 to use the SSID [3bears])

ancontrol an0 -o 1

(sets the operating mode of the Aironet interface 
from ad-hoc mode to infrastructure mode)
ifconfig an0 up

(brings an0 back online)
ancontrol -S

(displays settings and associations)

The last command showed us that the card was 
configured correctly for the wireless network 
[3bears], but could not get associated.  The Cisco 
base station logs showed that the wireless card had been 
denied authorization, proving that the MAC address 
filters were working correctly. Then we changed the 
MAC address to each one of the test MAC addresses 
(e.g., Intel below):

ancontrol an0 -m 00:02:B3:11:11:11

We then brought up the information screen on the 
Aironet card (ancontrol -S) and it showed the card 
as associated. We also checked the station's log, and it 
showed that the corresponding MAC address 
(00:02:B3:11:11:11) was authorized and 
associated. In this manner we successfully spoofed a 
broad range of MAC addresses on our Aironet card.  
During the process we would occasionally change the 
address to one that we knew wasn't allowed to connect 
(i.e., 00:02:B3:11:11:21), and the base station 
would not allow these addresses to connect. 

We conclude that our Aironet card could be used to 
impersonate any valid MAC address, and could connect 
to the restricted base station as that address.  Some 
WinCE drivers restricted the capability to change the 
MAC address;  e.g., the WaveLan (Lucent) cards would 
allow only multicast addresses to be specified 
successfully.  However, freely available operating 
systems had drivers compatible with standard Ethernet 
functionality.  Therefore, defeating MAC wireless 
authentication was relatively easy.  

b) The Wireless Encryption Protocol (WEP)

WEP struck us as exploitable due to the combination 
of a limited space IV (24-bits) with the use of an XOR 
operation with a bit stream.  The bit stream is uniquely 
determined by the IV.  Therefore, it is possible to build a 
code book (array) of the encryption bit stream for every 
IV by doing a known plaintext attack.  

In our active attack, one does not need to have a 
sniffer on the LAN to which the wireless network is 
connected.  Any internet connection may be used by the 
attacker to send packets to an IP address (such as a 
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broadcast address) on the wireless network.  Knowing 
the plain text and the encrypted one by sniffing the 
wireless network (which can be done at quite a distance 
with directional antennas) allows deducing the 
encryption bit stream and building a code book.

The completion of the code book is easier when 
hardware such as the Lucent cards increment the IV by 
one for every packet sent, rather than using random IVs 
(CAN-2001-0160;  Lucent was notified on 3/6/01).  
Building a complete code book takes longer because of 
random IV repetitions (“collisions”) that do not provide 
new information.  We realize that random IVs allow 
collisions to happen more frequently [8], so the defender 
is vulnerable no matter how the IVs are determined.  
However, we believe that “collisions” are more difficult 
to exploit than a complete code book, hence the 
vulnerability.

We  built two applications, one to collect and build a 
code book, and one to decrypt packets on the fly.  Both 
are available upon request to other accredited security 
researchers.  The one that collects pads from an WEP 
network and stores them in a database (pads.db by 
default) is named cpads.  The collection speed was 
several times slower than the maximal theoretical rate;  
however it demonstrated that building a complete code 
book, even with random IVs, was practical within the 
limitations of the year 2001 hard drive sizes (20-60 GB, 
depending on the desired length of the bit stream in the 
code book) and on a time scale of approximately a day.  
A harder to detect passive attack that would sniff 
incoming traffic and compare it to the WEP-encrypted 
one is also possible, although more difficult.  

The second application was dwep, and sniffed traffic 
from an encrypted wireless network and performed on-
the-fly decryption of the traffic and output it either to the 
screen or to a file.  It performed flawlessly, 
demonstrating that such attacks are practical.

c) Vulnerabilities in 802.11b implementations

We found that Cisco 340-series Aironet access points 
used a subset of the available  IV space for WEP 
encryption.  Cisco access points using firmware 11.01 do 
not use 6 bits out of 24 (3 bytes) IV for WEP encryption.  
The result is a 64 times weaker protection of 
communications, and makes the collection of pads 
through plaintext attacks fairly easy.  This was 
communicated to Cisco (CAN-2001-0161, Bugtraq ID 
2418 ) on 3/6/01, along with the TCP initial sequence 
number vulnerability.

6. Conclusions

Networked Windows CE devices are vulnerable to 
some of the same issues as PCs, i.e., flaws in protocols 
and implementation problems.  Closed source and 
proprietary protocols make it difficult to distinguish 
which was a protocol flaw and which was an 
implementation problem.  Security through obscurity 
delays the finding of vulnerabilities and makes their 
analysis more difficult.  However, the delays result in a 
larger installed base of vulnerable devices once the 
vulnerabilities are found.  Moreover, malicious 
discoverers of vulnerabilities have longer windows  
during which to exploit them -- perhaps they will even be 
the only ones finding them, because they were not limited 
by the economic goals that productive workers must 
meet.  

In addition, there are issues specific to PDAs in a 
wireless environment.  PDAs have proprietary 
synchronization protocols which require their counterpart 
on PCs, and which can therefore be attacked on both 
ends.  Moreover, wireless transport exposes both the 
PDA and the infrastructure (including PCs) to 
anonymous ranged attacks.  Our experiments provided 
proof that some of the theoretical wireless attacks were 
practical.
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8. Appendix A:  Exploits attempted against 
WinCE

1) Pingflood.c had no effect.  However, giving the 
following command: ping -f [dest_address] caused the 
iPaq to slow considerably when in conjunction with 
running internet explorer, but the effects only lasted as 
long as the flood was executing.

2) Killwin (CVE-1999-0153, a.k.a. Winnuke - send 
out of band data to port 139) had no visible effects.

3-4) Flushot (Invalid ICMP fragments, Microsoft 
Q154174) and Pong (spoofed ICMP broadcast flood) 
seemed to connect and communicate, but had no visible 
effect on the iPaq.

5) Jolt (CAN-1999-0345).  This attack usually locks 
up a Windows 95 or NT machine or causes it to reboot. 
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To recover from the Jolt attack, it is usually necessary to 
reboot. Jolt, given a high enough number of packets to 
send, slowed the system while the packets were being 
received, but had no other effects (it worked basically 
like the ping flood above.)  However, when wireless 
encryption was activated, Jolt  used 100% of the iPaq's 
CPU, causing the iPaq to freeze completely for as long 
as jolt packets were being sent (this occurred even 
without running any programs on the iPaq, including 
vxWeb and internet explorer).  It did seem to log at least 
the last command given during its frozen state (tapping 
the start menu while frozen caused the menu to open 
once the jolt attack stopped).   We conclude that whereas 
processing the fragmented ICMP packets was onerous to 
the iPaq especially with wireless encryption (WEP), 
WinCE was resistant to the attack.

6) Nestea (CAN-1999-0257) had no visible effect.

7-10) Teardrop, Octopus, Fawx and Jolt2 
(respectively CAN-1999-0015,  opening a large number 
of connections, oversized/fragmented IGMP flood and 
CVE-2000-0305) had no visible effects.

11) Kod (Kiss of Death).  Kod disabled the IP stack 
every time, exploiting an IGMP vulnerability  (CVE-
1999-0918).

9. Appendix B:  Tested MAC addresses by 
company

The company codes below were found at 
http://standards.ieee.org/regauth/oui/index.shtml:

00:02:2D:11:11:11 Lucent Tech WCND
00:30:6D:11:11:11 Lucent Technologies
00:00:0C:11:11:11 Cisco Systems, Inc.
00:30:78:11:11:11 Cisco Systems, Inc.
00:E0:FE:11:11:11 Cisco Systems, Inc.
08:00:07:11:11:11 Apple Computer, Inc.
00:0A:27:11:11:11 Apple Computer, Inc.
10:00:5A:11:11:11 IBM Corporation
00:50:76:11:11:11 IBM Corporation
00:10:D9:11:11:11 IBM Japan, Fujisawa 
00:04:BD:11:11:11 Motorola BCS
08:00:6C:11:11:11 Suntek Technology, Int'l
00:03:BA:11:11:11 Sun Microsystems
00:50:F2:11:11:11 Microsoft Corp.
00:02:B3:11:11:11 Intel
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