

ActiveSync, TCP/IP and 802.11b Wireless Vulnerabilities of WinCE-based PDAs

Pascal Meunier, Sofie Nystrom, Seny Kamara, Scott Yost, Kyle Alexander, Dan Noland, Jared
Crane

Center for Education and Research in Information Assurance Security (CERIAS), 1315 Recitation
Building, Purdue University, West Lafayette, IN 47907-1315; winCE@cerias.purdue.edu

Abstract
Researching the vulnerabilities and security concerns of
WinCE-based Personal Digital Assistants (PDAs) in an
802.11 wireless environment resulted in identifying
CAN-2001-{0158 to 0163}. The full understanding and
demonstration of some vulnerabilities would have
required reverse engineering ActiveSync, which was
beyond the scope of this research. Moreover, the WinCE
IP stack demonstrated unstabilities under a number of
attacks, one of which produced symptoms in hardware.
The inaccessibility of the 802.11b standard
documentation was a source of delays in the research;
however, we created three proof-of-concept applications
to defeat 802.11b security. One collects valid MAC
addresses on the network, which defeats MAC-address-
based restrictions. Another builds a code book using
known-plaintext attacks, and the third decrypts 802.11b
traffic on-the-fly using the code book.
Keywords:WinCE, WEP, ActiveSync, wireless, security,
802.11b, vulnerability

1. Introduction

Personal Digital Assistants (PDAs) may be vulnerable
to accidents during transport or attacks against the
services and protocols used. Networked PDAs may be
vulnerable to a number of TCP/IP attacks, especially
resource exhaustion attacks due to the limited resources
provided by the PDA. Other attacks against networked
PDAs would include malicious content downloaded
directly or through a service such as avantgo.com, hostile
JavaScript, ActiveX and Java. An aspect particular to
WinCE-based PDAs is the availability of
synchronization services through the ActiveSync
protocol over a serial link, infrared or over TCP/IP;
therefore ActiveSync can also be attacked. The
convenience of PDAs is enhanced by wireless access,
which makes them vulnerable to attacks against the
wireless standard 802.11b.

Whereas normal computers may be locked in a trusted
area, portables may be carried into unsafe areas, and may
also be whisked away by an attacker in a moment of
distraction or during a break and replaced after installing
a keylogger or other trojan program. Therefore, we
believe that physical attacks on portable devices are
much more likely than against normal computers; in
particular, we are concerned about the speed of the
attacks which may enable “tainting” the portable device.

ActiveSync was created to provide file
synchronization capabilities for WinCE-based PDAs. It
provides both network-based and local (USB or serial)
synchronization capabilities. The impersonation of a host
or PDA, as well as attacks on the host providing the
service were considered. However, ActiveSync
specifications are proprietary (closed) and were
unavailable to us. Therefore, we were limited to probing
the outside of this black box without being able to
provide a comprehensive analysis.

In an 802.11b wireless environment, several measures
and features are supposed to provide some measure of
security. These are the SSID (Service Set Identifier),
MAC address restriction, and the wireless encryption
protocol (WEP). Networks are identified and segregated
by an SSID. The SSID can be broadcast using “beacon”
frames. So-called “closed” networks do not broadcast
SSIDs, so the users have to know the name of the
network. However, finding valid SSIDs is trivial with
any network sniffer. Therefore, we focused on MAC
address restriction, and the wireless encryption protocol
(WEP). Our methods of attack have been found
independently by other teams and announced first
through unrefereed channels [1, 2], even though we had
independently identified those we used before their
announcements. However, we implemented these attacks
and found them effective and practical, contrary to claims
by the 802.11b chairperson [6]. We also found
implementation errors in 802.11b hardware.

Proceedings of the Eleventh IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE’02)
1080-1383/02 $17.00 © 2002 IEEE

2. Materials and Methods

The initial testbed comprised 3 Aero 1550 Pocket PC
devices by Compaq, an Aironet card and 2 base stations
AP340 by Cisco (gifts of Microsoft) as well as two PCs
belonging to CERIAS. One PC ran Windows 2000 and
served as a synchronization host for the handhelds.
Another was able to boot in either Windows 2000 or
Linux Red Hat 6.2; this PC had a PCMCIA card reader
and was used to sniff wireless traffic and as a source of
attacks against the synchronization host and the Cisco
base station. It was found that the Aero 1550 devices
were incapable of powering the Aironet card due to
incompatible voltages. We later received two PocketPC
iPaq devices by Compaq, two Ethernet cards and two
more wireless cards (Orinoco WaveLan). The iPaqs
were running WinCE 3.0.9348 (Build 9456).

3. ActiveSync

a) Synchronization over a serial link

The most direct ActiveSync connection may be
established by placing the device into a charging cradle
which is connected to the serial port of a PC. After the
initial connection the user at the PC will be prompted to
authenticate himself/herself if and only if the device is
set to require authentication. Authentication for
ActiveSync comes in the form of a 4 decimal digit
personal identification number (PIN) . Should a PDA be
left briefly unattended, it is possible to try to synchronize
it in the cradle of a hostile computer.

If the correct PIN is supplied then the device and the
PC compare the files that are to be synchronized and
transfer them as necessary. If an incorrect PIN number
is supplied, then an error message is displayed and the
user may guess twice more before the connection is
broken. To re-establish a new connection, with three
more attempts, seemed at first to require removing and
replacing the PDA in the cradle. However, we
discovered that the unit does not have to be removed
physically from the cradle. The connection can be reset
programatically and three more successive tries are
granted.

We were successful in making a proof-of-concept
(unoptimized and slow) brute force attack in the cradle
by resetting the connection every three password
attempts. We communicated our findings to Microsoft
and suggested that an exponential delay be implemented,
which would deny for a while new connection attempts
to the PDA. The delay would be increased by a hard

coded factor after every failed connection attempt.
The brute force program was a Visual Basic script that

utilized a function called SendKeys(), which sends
keystrokes through the GUI interface. By sending key
strokes to the ActiveSync connection application on the
PC, it was possible to establish a connection, try three
passwords and reconect to try it again. Obviously,
anyone who understands the internals of ActiveSync can
directly brute force the 4 required digits in a fraction of
the time by avoiding the GUI entirely. The key to this
vulnerability is the trust relationship between the PDA
and the host PC. Because the PDA acts as the
authentication server, it should not be trusting the client
PC and the software running on it. The PDA should be
controlling the exponential backoff, and not the PC.

b) ActiveSync synchronization over a Network
(DoS Attacks CAN-2001-0158, CAN-2001-0159)

ActiveSync listens on port 5679 of a host PC for a
PDA attempting a network synchronization. If a PDA is
synchronized through the cradle, port 5679 is closed.
The availability of the network synchronization function
can be enabled or disabled by the user through an option
in the file menu of the host.

We were able to enact a denial of service (DoS) attack
and remotely close the port by establishing a connection
to it and feeding ActiveSync any line that was longer
than seven characters. The port stayed closed until the
network synchronization option was locally re-enabled
on the desktop machine. Anyone with TCP/IP
connectivity to the PC could shut down the service,
which is potentially anyone on the internet.

Once open, port 5679 stayed open even if network
synchronization was disabled. Another DoS attack was
that as long as a connection to port 5679 was established,
even if there were no authentication taking place (no
traffic), ActiveSync would not allow any other device to
synchronize by network or by cradle. This lasted for
about 20 seconds at which point the connection was
closed and became available once again. This could also
be exploited remotely in order to prevent legitimate users
from synchronizing. By simply establishing a connection
to the port, closing it before the 20 seconds elapsed and
then re-establishing it again, we could keep the port
continuously busy, thus making ActiveSync refuse all
other synchronization requests.

If the protocol specifications and the code had been
available to us, we would have been able to assess
whether the vulnerabilities were protocol flaws or
implementation problems.

Proceedings of the Eleventh IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE’02)
1080-1383/02 $17.00 © 2002 IEEE

4. TCP/IP Vulnerabilities

a) Random IP packets and DoS attacks

In order to test the WinCE IP stack, we used a tool
named ISIC [4] that generates random IP packets. ISIC
is a suite of utilities to exercise the stability of an IP
Stack and its component stacks (TCP, UDP, ICMP et.
al.). It generates pseudo-random packets of the target
protocol. The packets can be given characteristics, e.g.,
40% of the packets generated can have IP Options. The
percentages are arbitrary and most of the packet fields
have configurable parameters. We sent packets to the IP
stack of an iPaq using both an Ethernet card and a
wireless (Orinoco Silver 802.11b) card.

We were surprised to find that which pseudo-random
number generator was used was an important
consideration. Some observed WinCE severe crashes
could not be obtained with a different random number
generator. This is most likely due to the fact that a
specific sequence of numbers from a generator is needed
in order to produce a sequence of packets. Other
pseudo-random generators may be completely unable to
produce a sequence that another generator can. Finally,
we used a hardware random number generator embedded
into an Intel Celeron motherboard, which seemed to be
able to produce the entire range of observed effects. No
application was running on the iPaq while the packets
were sent to it. Thereafter, the functionality of the
TCP/IP stack was tested by running Internet Explorer, if
possible.

Five test results were randomly observed from
sending hundreds of thousands of packets:

1)Loss of Internet capability: the iPaq was no longer
able to connect to any outside source, however no local
programs seemed affected. Shutting off the iPaq did not
restore Internet capability, and a soft reset (pressing the
iPaq's reset button) was necessary to restore
functionality.

2)Needed hard reset: All programs froze on the iPaq
and the unit gave no responses. A soft reset was
insufficient to restore functionality, and disconnecting
the iPaq's battery via the unit's switch was necessary.
This caused a total data loss.

3)Internet Explorer application error: Trying to run
I.E. produced a “fatal application error” and a soft reset
was necessary to restore the program's functionality.

4)Memory Critically Low error: This error message
was present in a window at the end of the ISIC run, most
often with several instances of it on the screen. It stated
that one or more programs should be closed; yet there
were no programs running at the time. A soft reset was

necessary to free the allocated memory.
5)No effect: No visible effects were found after

running ISIC.
However, the effects were highly unreproducible, even

after resending the same sequence of packets, or a subset.
The longer we would try to test the iPaq (not necessarily
time but attempts), the less frequently we would observe
problems. After much testing and grief, we found that
there was a memory problem related to when the iPaq
was turned “off” (sleep) for long periods of time. The
most common time for the Memory Critically Low error
was just after the iPaq was turned on after a long period
of being off (several hours); about 27MB (out of 32 MB)
were in use after sending the random packets. As the iPaq
was reset during tests, the memory reported as being used
slowly went down to about 5MB, until effects 1-4 could
rarely be observed.

Due to the irreproducibility of the results, we were
unable to specify the conditions causing each effect.
Microsoft was notified of this during summer of 2001.
While we were unable to pinpoint a specific
vulnerability, these results suggest a lack of robustness
that could be exploited to cause data losses.

b) Known exploits

A number of known attacks against Windows
operating systems were run against the iPaq (see
Appendix A) on a wireless network, with and without
using encryption (WEP, see part 3). In order to have an
open port, the application “vxWeb” (by Cambridge
Computer Corp) was running on the iPaq, as needed. It
provided a web server on port 80. The attacks were
compiled on and sent from Red Hat Linux and OpenBSD
machines. Of these, Kod was very effective, disabling
the IP stack every time. There was a complete loss of
internet connectivity until the iPaq was given a soft reset.
This is caused by an IGMP vulnerability known since at
least June 1999 (CVE-1999-0918). However it was
unknown that it affected WinCE, as this information is
absent from the CVE and databases like ISS’s X-Force at
the time of this writing.

c) Vulnerability Scan

We scanned the WinCE iPAQ for known
vulnerabilities using Nessus [3]. We found that WinCE
uses a common trivial time dependency algorithm to
generate its initial sequence numbers. To achieve
reliability, TCP uses sequence numbers that keep track of
the data exchanged during its sessions. During the setup
of a TCP connection (the three way handshake), each

Proceedings of the Eleventh IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE’02)
1080-1383/02 $17.00 © 2002 IEEE

side generates an initial sequence number (ISN) that they
will exchange in order to synchronize their TCP stacks
[RFC 793]. If the ISN can be guessed, then a TCP
connection can be setup without needing to receive any
packets from the other side, which enables IP spoofing
[7] and TCP Session Hijacking [5] attacks. This was
given ID CAN-2001-0162, as there was no report that we
could find of this WinCE vulnerability at the time of the
discovery.

The Cisco Wireless Base Station also used a trivial
algorithm to generate its initial sequence numbers (CAN-
2001-0163). It used the 64K rule which increases a
sequence counter by a constant (usually 128000) every
second and by 64000 for each new connection. The same
attacks that were discussed earlier could be used against
the access point.

5. The 802.11b Standard

a) MAC addresses
Restricting association and access to an 802.11b

network based on the MAC (hardware) address of the
wireless cards is one security mechanism that we
attacked. We created a program, wmacs, that sniffs a
wireless interface and gives the MAC addresses that are
currently used on the network. Once a collection of
allowed MAC addresses has been obtained, using them
is a matter of convincing the wireless card to use it. We
studied whether a wireless card could be used to spoof
any MAC address, or whether it was restricted to MAC
addresses of the same manufacturer, etc... Whereas this
is not highly original research, it needed to be verified
because the wireless hardware is significantly different
from regular Ethernet cards.

We setup the base station to restrict incoming MAC
addresses and allow only one representative Ethernet
address from each range associated to a manufacturer
(Appendix B). The first 3 bytes represent the company
that the product is registered to; for simplicity’s sake we
used “11:11:11” as the last three bytes. This produced
an address different from the one given to our wireless
card at the factory. Therefore, our wireless card should
not have been able to associate and communicate with
the wireless network.

Then we setup our Aironet card on our OpenBSD
system to connect to the base station:

ifconfig an0 down
(brings an0, the Aironet card, offline)

ancontrol an0 -n [3bears]
(sets an0 to use the SSID [3bears])

ancontrol an0 -o 1

(sets the operating mode of the Aironet interface
from ad-hoc mode to infrastructure mode)
ifconfig an0 up

(brings an0 back online)
ancontrol -S

(displays settings and associations)

The last command showed us that the card was
configured correctly for the wireless network
[3bears], but could not get associated. The Cisco
base station logs showed that the wireless card had been
denied authorization, proving that the MAC address
filters were working correctly. Then we changed the
MAC address to each one of the test MAC addresses
(e.g., Intel below):

ancontrol an0 -m 00:02:B3:11:11:11

We then brought up the information screen on the
Aironet card (ancontrol -S) and it showed the card
as associated. We also checked the station's log, and it
showed that the corresponding MAC address
(00:02:B3:11:11:11) was authorized and
associated. In this manner we successfully spoofed a
broad range of MAC addresses on our Aironet card.
During the process we would occasionally change the
address to one that we knew wasn't allowed to connect
(i.e., 00:02:B3:11:11:21), and the base station
would not allow these addresses to connect.

We conclude that our Aironet card could be used to
impersonate any valid MAC address, and could connect
to the restricted base station as that address. Some
WinCE drivers restricted the capability to change the
MAC address; e.g., the WaveLan (Lucent) cards would
allow only multicast addresses to be specified
successfully. However, freely available operating
systems had drivers compatible with standard Ethernet
functionality. Therefore, defeating MAC wireless
authentication was relatively easy.

b) The Wireless Encryption Protocol (WEP)

WEP struck us as exploitable due to the combination
of a limited space IV (24-bits) with the use of an XOR
operation with a bit stream. The bit stream is uniquely
determined by the IV. Therefore, it is possible to build a
code book (array) of the encryption bit stream for every
IV by doing a known plaintext attack.

In our active attack, one does not need to have a
sniffer on the LAN to which the wireless network is
connected. Any internet connection may be used by the
attacker to send packets to an IP address (such as a

Proceedings of the Eleventh IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE’02)
1080-1383/02 $17.00 © 2002 IEEE

broadcast address) on the wireless network. Knowing
the plain text and the encrypted one by sniffing the
wireless network (which can be done at quite a distance
with directional antennas) allows deducing the
encryption bit stream and building a code book.

The completion of the code book is easier when
hardware such as the Lucent cards increment the IV by
one for every packet sent, rather than using random IVs
(CAN-2001-0160; Lucent was notified on 3/6/01).
Building a complete code book takes longer because of
random IV repetitions (“collisions”) that do not provide
new information. We realize that random IVs allow
collisions to happen more frequently [8], so the defender
is vulnerable no matter how the IVs are determined.
However, we believe that “collisions” are more difficult
to exploit than a complete code book, hence the
vulnerability.

We built two applications, one to collect and build a
code book, and one to decrypt packets on the fly. Both
are available upon request to other accredited security
researchers. The one that collects pads from an WEP
network and stores them in a database (pads.db by
default) is named cpads. The collection speed was
several times slower than the maximal theoretical rate;
however it demonstrated that building a complete code
book, even with random IVs, was practical within the
limitations of the year 2001 hard drive sizes (20-60 GB,
depending on the desired length of the bit stream in the
code book) and on a time scale of approximately a day.
A harder to detect passive attack that would sniff
incoming traffic and compare it to the WEP-encrypted
one is also possible, although more difficult.

The second application was dwep, and sniffed traffic
from an encrypted wireless network and performed on-
the-fly decryption of the traffic and output it either to the
screen or to a file. It performed flawlessly,
demonstrating that such attacks are practical.

c) Vulnerabilities in 802.11b implementations

We found that Cisco 340-series Aironet access points
used a subset of the available IV space for WEP
encryption. Cisco access points using firmware 11.01 do
not use 6 bits out of 24 (3 bytes) IV for WEP encryption.
The result is a 64 times weaker protection of
communications, and makes the collection of pads
through plaintext attacks fairly easy. This was
communicated to Cisco (CAN-2001-0161, Bugtraq ID
2418) on 3/6/01, along with the TCP initial sequence
number vulnerability.

6. Conclusions

Networked Windows CE devices are vulnerable to
some of the same issues as PCs, i.e., flaws in protocols
and implementation problems. Closed source and
proprietary protocols make it difficult to distinguish
which was a protocol flaw and which was an
implementation problem. Security through obscurity
delays the finding of vulnerabilities and makes their
analysis more difficult. However, the delays result in a
larger installed base of vulnerable devices once the
vulnerabilities are found. Moreover, malicious
discoverers of vulnerabilities have longer windows
during which to exploit them -- perhaps they will even be
the only ones finding them, because they were not limited
by the economic goals that productive workers must
meet.

In addition, there are issues specific to PDAs in a
wireless environment. PDAs have proprietary
synchronization protocols which require their counterpart
on PCs, and which can therefore be attacked on both
ends. Moreover, wireless transport exposes both the
PDA and the infrastructure (including PCs) to
anonymous ranged attacks. Our experiments provided
proof that some of the theoretical wireless attacks were
practical.

7. Acknowledgements

We are grateful for Kent Wert's advice and expertise
with Windows CE, and for Microsoft's funding of this
research.

8. Appendix A: Exploits attempted against
WinCE

1) Pingflood.c had no effect. However, giving the
following command: ping -f [dest_address] caused the
iPaq to slow considerably when in conjunction with
running internet explorer, but the effects only lasted as
long as the flood was executing.

2) Killwin (CVE-1999-0153, a.k.a. Winnuke - send
out of band data to port 139) had no visible effects.

3-4) Flushot (Invalid ICMP fragments, Microsoft
Q154174) and Pong (spoofed ICMP broadcast flood)
seemed to connect and communicate, but had no visible
effect on the iPaq.

5) Jolt (CAN-1999-0345). This attack usually locks
up a Windows 95 or NT machine or causes it to reboot.

Proceedings of the Eleventh IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE’02)
1080-1383/02 $17.00 © 2002 IEEE

To recover from the Jolt attack, it is usually necessary to
reboot. Jolt, given a high enough number of packets to
send, slowed the system while the packets were being
received, but had no other effects (it worked basically
like the ping flood above.) However, when wireless
encryption was activated, Jolt used 100% of the iPaq's
CPU, causing the iPaq to freeze completely for as long
as jolt packets were being sent (this occurred even
without running any programs on the iPaq, including
vxWeb and internet explorer). It did seem to log at least
the last command given during its frozen state (tapping
the start menu while frozen caused the menu to open
once the jolt attack stopped). We conclude that whereas
processing the fragmented ICMP packets was onerous to
the iPaq especially with wireless encryption (WEP),
WinCE was resistant to the attack.

6) Nestea (CAN-1999-0257) had no visible effect.

7-10) Teardrop, Octopus, Fawx and Jolt2
(respectively CAN-1999-0015, opening a large number
of connections, oversized/fragmented IGMP flood and
CVE-2000-0305) had no visible effects.

11) Kod (Kiss of Death). Kod disabled the IP stack
every time, exploiting an IGMP vulnerability (CVE-
1999-0918).

9. Appendix B: Tested MAC addresses by
company

The company codes below were found at
http://standards.ieee.org/regauth/oui/index.shtml:

00:02:2D:11:11:11 Lucent Tech WCND
00:30:6D:11:11:11 Lucent Technologies
00:00:0C:11:11:11 Cisco Systems, Inc.
00:30:78:11:11:11 Cisco Systems, Inc.
00:E0:FE:11:11:11 Cisco Systems, Inc.
08:00:07:11:11:11 Apple Computer, Inc.
00:0A:27:11:11:11 Apple Computer, Inc.
10:00:5A:11:11:11 IBM Corporation
00:50:76:11:11:11 IBM Corporation
00:10:D9:11:11:11 IBM Japan, Fujisawa
00:04:BD:11:11:11 Motorola BCS
08:00:6C:11:11:11 Suntek Technology, Int'l
00:03:BA:11:11:11 Sun Microsystems
00:50:F2:11:11:11 Microsoft Corp.
00:02:B3:11:11:11 Intel

10. References

[1] Arbaugh, W. A., Shankar, N., Wan, Y.C. J. (2001) Your
802.11 Wireless Network has No Clothes. Department of
Computer Science, University of Maryland College Park,
Maryland 20742
[2] Borisov N., Goldberg, I. , Wagner, D. (2001) Intercepting
mobile communications: the insecurity of 802.11 In:
Proceedings of the seventh annual international conference on
Mobile computing and networking. pp. 180 - 189. ACM
Press, New York, NY, USA.
[3] Deraison, R. (2000) Nessus, http://www.nessus.org
[4] Frantzen M. (2000) ISIC (IP Stack Integrity Checker),
http://expert.cc.purdue.edu/~frantzen
[5] L. Joncheray (1995) A Simple Active Attack Against TCP.
Proc. Fifth Usenix UNIX Security Symposium.
[6] Miller, S.K. (2001) Facing the challenge of wireless
security. Computer, Vol. 34 Issue: 7 , July 2001, pp. 16 -18
[7] Morris, R.T. (1985) A Weakness in the 4.2BSD UNIX
TCP/IP Software, CSTR 117, 1985, AT\&T Bell Laboratories,
Murray Hill, NJ.
[8] Walker J. R. “Unsafe at Any Key Size; An Analysis of the
WEP Encapsulation,” (2000) http://grouper.ieee.org/groups/802
/11/Documents/DocumentHolder/0-362.zip

Proceedings of the Eleventh IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE’02)
1080-1383/02 $17.00 © 2002 IEEE

