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i A Notional Example

Multiple sensors with Possibly additional
one or more bearing or signal features
location measurements
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Challenge: Scalable algorithms for data
association and estimation under
network constraints



iThe Estimation/Association Problem-I

e Objects:  {1,..., N} Sensors: {l1,...,M}
e O, = objects seen by ith sensor = {n,),...,n,, } = {l,..., N}
e 5, =sensors seeing kth object ={r,,,...,7, f < {l,...,M}
¢ Desired quantities

—x, = Object "state" (location, velocity, type,...)

— p(x,) ="Prior" distribution



I'he Estimation/Association Problem-1II

¢ Assignment and measurement permutations

-Sensor i measurements {1,...,m.}
- Permutation 7; : {n,),...,n,, }——>{1,...,m}

7;(n,;) = Sensor i measurement index for object n,
- Assignment vector for Object k :a, ={j,,,---, j;, }

J.. = Measurement index for Sensor 7, observation of object k

e The data association constraint: j,, =7, (k)



i The Estimation/Association Problem-III

e Measured quantities

—{Vise e e Vim } —measurements from Sensor i
o [f {a } or equivalently {7, } are known

Vi (n,) IDCASUIES Object 7;(n;)

(e.g. Vizn) = f (xfr,-(n,,-)) + noise



i The Estimation Problem

= Given the assignments/permutations,
compute the optimal estimates for each
object as well as the /likelihoods for each
set of assignments to each individual
object
= A graphical model estimation problem

= The likelihoods for each set of assignments to
each object act as “scores” for optimal data
association



‘-H The Association Problem

= Given the "scores”, determine the optimal
(or nearly optimal) set of assignments

= This is a graphical model optimization problem

Association
Constraints

Object #1 Object #N

a ay

Likelihood
Scores ——

L(ay)



Fusion and Inference on
Graphical Models

oG =(V,E)V =nodes, ECV x 1V =edges
o C=setof cliquesC c ¥
¢ x_,s €V -random variables / vectors at nodes of the graph, forming a Markov random field

e Given label "compatibility functions" . (x,.)

P({xg | s V) [Ty (x,)

ccC
e Objective
Estimation: Compute P(x,)

Optimization: argmax P({x;|se?))



Trees are Nice

= If the graph is acyclic, the distribution factorizes:

For Estimation
,X,)
P({x |se?l)= $2 1
(1x, | §) 11 (x )(SI;LEP(x)P(x)
For Optimization

P,(x,,x,)
P V) oc P g
({x, | s€V}) 11 (x )(}LP(x)P(x)

P (x,)= max P({x,[se€V})
x, |1 # s}
= Furthermore, these factorizations can be computed by
sequences of local passing of messages



i Exploiting acyclic structure

= Last time, introduced three classes of
algorithms:
= Embedded Tree Estimation Algorithms

= Recursive Cavity Models (for linear and
nonlinear estimation)

=« Tree Reparameterization Algorithms (for
discrete, continuous, hybrid estimation
and graphical optimization)






ET (continued)

s Previous results

= Algorithms that (if they converge) yield not only
optimal estimates but also correct error statistics

= Recent progress

= Demonstration of excellent convergence properties
= Using multiple trees

= Using “preconditioner” concepts (tree computation
followed by “local” relaxation steps

= Sufficient conditions for convergence
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Estimate and covariance
convergence results

Estimate Convergence Covariance Convergence
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$ Recursive Cavity Models




:H RCM (continued)

= Previous results
« Last year we introduced the RCM concept

= Recent progress

= Demonstration of efficiency and accuracy of RCM
procedures with "boundary thinning”

= Extension from linear models to general discrete and
hybrid models

= Theoretical framework for establishing stability and
performance bounds from boundary thinning



‘-H Tree-Reparameterization Algorithms

= Previous results (for estimation on/y)
= Introduction of the framework
= Characterization of fixed points of iterations
= Some convergence results

= Initial work on characterizing errors in
resulting estimates



i The TRP Concept

= For any embedded acyclic structure:

For Estimation
,X,) :
P({x, |se?v})=]1T.(x,) Y50%)_ Remainder
g (sllf T (x )T(x,)
For Optimization
s? l)

x Remainder

P Vi) o«
({x, |s€v}) 11 (x )(SILT(x)T(x)

T.(x,)= max T({x,|sev})
{x, |t#s}



i TRP: Recent Progress, Part I

= Demonstration of superior performance in
many cases (without optimizing choices of
trees)

s Error characterization and bounds

= The key is the TRP representation which
allows error representation in terms of
expectations over tree-distributions

= Optimal Bounds: Weighting over all trees
= There are /ots of trees!
= Convex analysis comes to the rescue



-2.5

Distance to fixed point

—e— BP
—— TRP

10

20

30
[teration

40

50

Error in marginal

0.1

0.05f

-0.05f

-0.1

—o— Actual error
—— Upper/lower bounds

10 12
Node number

14 16

18

20



TRP: Recent Progress, Part I1

= [RP for optimization (rather than estimation)

= Characterization of large classes of distributed
algorithms: Rewriting global “cost” in terms of locally
computable costs through message passing

= Fixed point characterization
= Clarifying when this works even in the acyclic case
= Bounds
= Use of “reweighting” concept to obtain algorithms that
yield optimal solutions

= Yields distributed optimal solution to the data association
problem



i Small Example

= 7/ "sensors” (either all different sensors at
same point in time or fewer sensors with
measurements at multiple times)

= 21 targets
= Each “sensor” sees 5 targets

= Key issue: How organize hypotheses?
= Target-centric? (best for centralized fusion)
= Sensor-centric? (distributed)
= Hybrid, driven by dynamic structure



= Sensor-centric global hypothesis space is
huge even for this problem



= Message passing algorithm yields
distributed association solution very
quickly and efficiently



i Where to from here?

= Exploitation of framework for target tracking

» EXplicit (rather than implicit) representation of
time, combining RCM and TRP

= Incorporation of false, missed alarms, new objects
= Extension of optimization results to include
both guerying and stopping (as in sequential
tests)
= Expanding the tradeoff space
« Effect of local memory
» Effect of nonlocal (or multi-hop) communications
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