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i Vital Statistics

m IT-1
s RCA-5, with ties to RCA-6, 2&3

= Participants
» Sudderth, Wainwright, Johnson, Willsky,
Jaakkola
= “Outputs”
= Several publications
» Several invited talks
« Initiating transition of some work already




The Problem

= A network of “nodes”

= Some representing sensors, some the “hidden”
variables to be estimated

= Links between nodes represent:

= Statistical relationships among variables (e.g., between
measurements and hidden variables or between those
variables themselves)

= Communication links between sensors
= Objective: Perform optimal or provably near

optimal estimation of all variables given all data,
subject to network constraints






Linear Estimation on Graphs

z ~ N(0,P) v ~ N(0O,R)
y = Cz+v y ~ N(0,CPCT +R)

¢ =[z1 22 ... zn]T = unobserved state variables (dim z; = d)

y=[y1 ¥ ... ynv]T = noisy observations
Optimal MAP/BLSE estimates: p(z | y) ~ N(Z, P)
ﬁ_l"f = CTR™ 1y

P = [P'+CTRC)™

Goal: Compute p(::.- ] y} ~ N {E,—,ﬁ-] for each node efficiently.
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Graph Structure and Inverse Covariances

e

Consider a Gaussian prior z ~ N(0, P). Partition P! into a grid

of N x N blocks each of size d.

Sparse structure: By Hammersley-Clifford Thm., the (,7)t"

block will be nonzero only if there is an edge between nodes ¢ and j.

Graph Inverse Covariance
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Trees Are Nice

= |If the graph is acyclic (e.g., a tree), then there
exist very efficient algorithms for optimal
estimation
= Belief propagation (BP)
= Two-sweep algorithms analogous to Rauch-Tung
Striebel smoothing (tree-based Gaussian elimination)
= Key is the existence of what has been called “partially
nested information structures” in decentralized control
= |f the graph has cycles, optimal estimation is not
SO easy
= “Fill” in Gaussian elimination

= lterative algorithms such as BP don’t always converge,
and when they do, they give the correct estimates but
not the correct covariances



Embedded Trees

e By the Hammersley-Clifford Theorem, removing edges from a
graph is equivalent to zeroing the corresponding entries in P!

e A variety of spanning trees may be obtained by using different
“cutting matrices” K

Pt-reel[?] =#F "+ K



ET: Calculation of the estimates

[Pree — K +CTR™IC]Z=CTR Yy

tree

This matrix splitting naturally leads to the iterations
" = M} [Kt{njﬁn_l -+ CTR-ly]

t(n)

My = [P + CTR™1C]

tree(t(n))
t(n) = index of embedded tree for n'” iteration

Each iteration is a standard tree-structured Gaussian problem,
and can be solved directly in @O(Nd?) operations.




ET: Calculation of the covariances

32 = [My'+M7'KaM{'| CTR 1y
2 = [Mg'4+M7UKsM;! + M3 ' KsMy ' KaM{' | CTR™ Yy
= ﬁQTH_ly

Form sequence of low-rank matrices F'™:

f1—1

F* = M;'K,[F*'+M7},] Fl=0

{Z" ()} — 3(y) foraly — {F*"+M;'} — P

Directly tracking F™ takes O@(d* E2 N) operations per iteration; reduced
to Q(d® EN) with efficient implementation (E £ number of edges cut)



ET: Convergence
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For any initial condition 7", ¥ is the unique fixed point and

..-'-{) .
H M Ky | (@° - %)

If we periodically cycle through T spanning trees, {(z" — )}
evolves according to a linear-periodic system:

A= H M, K

p(A) <1 = {(@" — 7)} =5° 0 geometrically at rate v = p(A)*
p



Result: Inference on 20x20 Grid

i Convergence of means
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Convergence of error varances
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(b) Convergence of covariances



Complexity Comparisons

Comparison to other techniques

Method Cost/Iteration | Correct Error Covariances
Matrix Inversion O(d®N3) YES
Conjugate gradient O(dN) NO
Belief propagation O(d*N) NO
Embedded trees O(d®N) YES [O(d*EN)]




i ET’s not quite ready to phone home

Compact (and computable) sufficient or
necessary & sufficient conditions for convergence

New algorithmic structures using ET as a
preconditioner for CG

Faster results in some cases when ET diverges

Asynchronous versions using only local network
structure

Optimal or at least good choices of spanning
trees

Randomized choices of spanning trees



i Tree-Based Reparameterization (TRP)

= Motivated by success of ET, with focus
here on discrete-valued processes

= The key idea Is that distributions over
trees admit very special factorizations in
terms of marginal distributions at
Individual nodes and over maximal cliques
(assumed here to be doubletons)

= The idea uses the generalization of
factorizations for Markov chains



Estimation for a Markov process on a graph G

Consider stochastic process  on G such that p(e) >0 Ve € AX.

p - -
T

r is Markov w.r.t G — p(z) = %Htﬁc(fﬂ}
c

f . -

Markov property Factorization of distribution

Here Z =} [l %c(z) is the partition function that normalizes
the distribution.

Objective: Seek exact or approximate marginalsT_(X,), T, (X, %)
through reparameterization of thefactorized formof p(x)



(a) Initial parameterization (b) Desired parameterization

p[:.‘l?) = % HS T,I'sz H{a,t} Txf"st p(i) . ].-[3 T Hf.&r,t} %ﬁ



TRP: The Basic ldea

1. For any spanning tree S, factor distribution p(z):

p(z) = p'(z) ¢'(=)
p'(z) = distribution over spanning tree S°
¢'(z) = residual terms

2. Reparameterize spanning tree distribution p*(z).

3. Form another tree 87, and repeat process.

Note: Full distribution on graph with cycles remains invariant
under these updates.
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(b) Full graph after update



TRP and BP

= Interpretation of BP as a TRP algorithm, using
two-node, non-spanning trees
= Yields alternate algorithmic structure which cuts
storage requirement in half
= Empirical results confirm intuition that more
global communication structure of TRP yields
gains
= Lower total computational/communication cost

= Converges in some cases in which BP does not and
converges at least as fast or faster than BP when BP
does converge



Empirical Results

Graph Single 15-loop
R M A
BP 500 23.2 500 23.6 500 234
TRP 500 B.7 o00 8.8 500 8.6
Graph Tx T grid
R M
BP 455 62.3 267  310.1 457 65.8
TRP 500 53.3 282  180.6 500 53.9

): repulsive potentials
(A): attractive potentials
): mixed potentials



Convergence Plots
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i Theoretical Analysis of TRP

= Interpretation of TRP as successive
projection operation using a “distance”
related to Kullback-Liebler Divergence

= Demonstrates ties to analysis of BP and
minimization of Bethe free energy

= Key Is using an overcomplete parameterization
of an exponential family of distributions

» Leads to a characterization of fixed points
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(b) Consistent tree parameterization



i Fixed Points and Convergence

Fixed points exist!
Fixed points of TRP and BP are the same

Sufficient condition for application of TRP with
two spanning trees

Gives elementary proof that in the Linear-
Gaussian case, BP (when it converges) yields the
correct estimates but incorrect error variances

Interesting question: Can the exact marginals
form a fixed point?

= Answer: There are some cases where it can, but (we
believe) these form a very special (and thin) set



i Error Analysis

= Conceptually useful exact representation
of error

= Leads to upper and lower bounds on error
In probabilities produced by TRP (or BP)
when they converge
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i Where to from here?

= Enhanced bounds and analysis of behavior?

= Sensitivity analysis to understand “breaking points” of
the algorithm

= Characterizating when TRP yields exact answers

= Choice of trees
= For algorithm and for bounds

= Asynchronous, distributed implementation
= Parallel operation a la BP

= Without global knowledge of network structure
= Robust to changes in network structure

= New and better algorithms!



= The concept of a separator set, S

= Partitions the nodes of a graph into disjoint sets, A and
B, such that any path from one set to the other passes
through S

= Conditioned on the values on S, the values on A and B
are independent
= This suggests the idea of a recursive partitioning
of the graph, with the “state” of the process
corresponding to the values of the process along
a separating boundary

= Closely related to the idea of “frontier models” for
dynamic Bayes’ nets

= The challenge is dealing with “fill” for boundary states



i Frontier Models and RCM'’s

= Closely related to “marching methods” for
PDE's
= Boundary Models are propagated from frontier
to frontier

= These correspond (in the linear case) to so-
called information representations
(propagation of Pt and P-1X)

= Approximations made to keep P-! sparse,
based on locally available statistical quantities

= Computation of estimates then involves
separate calculations on each boundary
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* Notional Picture of a Frontier Model




* lllustration of the Upsweep of RCM
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* The RCM Downsweep




i Computation of Estimates

= Corresponds to solving sparse/graphical

eguations around each boundary
= These could also be solved, if desired, using
graphical techniques (e.g., ET)

= RCM can be embedded Iin an iterative
algorithm much as ET can, leading to very
efficient iterative algorithms, in essence
using RCM as a preconditioner



i Where to from here?

= Global measures of approximation error
and stabllity results
=« Ensuring that approximations made at one

boundary do not cause divergence more
globally

= Putting something into the cavities

= Latent variables
=« Improving boundary models

= Capturing more global, long-distance
characteristics/correlations (a la multipole
methods for PDE’S)






